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ABSTRACT 

We characterize those admissible ordinals a which have precisely one a-r.e.  
degree containing a non-regular or non-hyperregular set. For all other a we 
prove that any such degree e can be split into two strictly smaller such degrees 
a and b with a v b = e .  We also prove that weak a-recursiveness (_-<~) is 

intransitive on the t~-r.e, sets just in case there is more than one non- 
hyperregular a-r.e, degree. 

Non-regular and non-hyperregular sets are two of the major sources of 

differences between ordinary recursion theory and recursion theory on all 

admissible ordinals. (Recall that A _C a is non-regular if A A/3 is not a-finite, 

i.e. not a member of La, for some /3 < a. It is non-hyperregular if there is a 

function f weakly a-recursive in A which maps some /3 < a  onto an 

unbounded subset of a. We call the o~-degrees of such sets irregular and 

non-hyperregular respectively.) Not only do they prevent one from straightfor- 

wardly generalizing various constructions of ordinary recursion theory, but 

they also provide actual counterexamples to several standard theorems. 

Although the pathologies of non-regularity and non-hyperregularity can arise 

even among the a-r.e, sets, we are somewhat better off if we restrict our 

attention to the ~- r.e. degrees. The main advantage here is that one has various 

theorems that guarantee the existence of "nice" representatives from each 

a-r.e, degree. Thus, for example, Sacks [4] has shown that every a-r.e, degree 

contains a regular a-r.e, set, while Simpson [11] has proved that one can be 

found whose complement has order type the recursive cofinality of the degree. 

Indeed, results of this type have played an essential role in the proofs of most 

theorems about the a-r.e, degrees (e.g. [6], [81 and [11]). 

Received November  14, 1974 

28 



Vol. 22, 1975 a- r .e .  D E G R E E S  29 

In this paper we will continue to exploit these results together with the 

priority method developed in [8] and [9] to analyze the structure of the irregular 

and non-hyperregular a-r .e ,  degrees. Of course, if a*  = a (or a is E2 

admissible respectively) there are no such degrees. Otherwise we are faced 

with a basic dichotomy.  Either there is precisely one irregular (non- 

hyperregular) a-r .e,  degree or there are many and the structure of these 

degrees is very rich. 

In Section 2 we characterize those admissible ordinals for which the first 

possibility occurs and prove a sample theorem for the others: 

If e is a non-a-recurs ive  irregular (non-hyperregular) ot-r.e, degree then there 

are irregular (non-hyperregular) a-r .e,  degrees a and b such that avb  = e, e ;~ , a  

and e ~ ~ b. Indeed, by similar arguments one can embed in these degrees all the 

partial orderings that Lerman [3] embeds in the a-r .e ,  degrees. Moreover ,  the 

density theorem for all a-r .e,  degrees [9] (together with the characterization of 

irregular degrees in terms of their recursive cofinality [l I]) immediately 

establishes the density of these degrees as well. Thus, if there is more than one 

irregular (non-hyperregular) a- r.e. degree, the structure of such degrees seems 

much like that of all the a-r .e,  degrees. 

Our analysis of the structure of these degrees also supplies us with some 

interseting counterexamples to familiar theorems of ordinary recursion theory. 

For  example,  when there is precisely one irregular a-r .e ,  degree, the splitting 

theorem must fail for non-regular ot-r.e, sets. Indeed, even theorems about the 

a-r .e ,  degrees involving the jump operator  can fail: If there is precisely one 

non-hyperregular c~-r.e, degree, then every incomplete ot-r.e, degree has jump 

0' [10]. This, of course, contrasts with the result of Sacks that in ordinary 

recursion theory there is an incomplete r.e. degree with jump 0" [7, w As a 

final illustration of the importance of this dichotomy we show in Section 3 that 

-< w~ is intransitive (and so not equal to _- ~) on the a-r .e ,  degrees, just in case 

there is more than one non-hyperregular  a-r .e,  degree. 

Finally, we should warn the reader that although we at tempt in Section 1 to 

give a list of all the basic definitions of a- recurs ion theory as well as the more 

unusual facts that we need, the account  is necessarily sketchy. Thus the reader 

would be well advised first to read [8] or the alternative presentation of the 

methods of [8] given in [12, w before beginning this paper. In addition, 

several technical points on a - recurs ive  approximations of functions can be 

found in the first three sections of [9]. For  general background information on 

a- recurs ion theory we suggest [5] as well as [12]. 
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I. Definitions and other preliminaries 

We first summarize the standard definitions of a- recurs ion theory in terms of 

the levels La of G6del 's  constructible universe and the usual (strict) En 

hierarchy of formulas, a is admissible if L ,  satisfies the replacement  axiom 

schema of ZF for for  El formulas. Thus we are thinking of L~ as a model of a 

weak set theory.  All the usual set-theoretic terms (cardinal, cofinality, etc.) will 

therefore  have their usual definitions but interpreted inside L,, 

A set A C a is a-recursively enumerable (a-r.e.) if it has a E~ definition over  

L~, while a partial function f is partial a-recursive if its graph is a-r .e .  It is 

a-recursive if its domain is a. (Note that since there is a one-one a - recurs ive  

map of a onto L,, it suffices for  recursion theoretic purposes to restrict our 

attention to subsets of a and functions on a.) Of course, an A C_a is 

a - recurs ive  if its characteristic function is, while it is a-finite if it is a member  

of L~. Finally, we say that A C_ a is regular if A n /3  is a-finite for  every/3  < a. 

The basic recursion theoretic fact about admissible ordinals is that one can 

perform A~ ( = a-recurs ive)  recursions in L ,  to produce a- recurs ive  functions. 

Thus, for  example, we can a- recurs ively  G6del number the a-finite sets 

K~(y < a )  and the Eo/L~ formulas with two free variables ~ , (x ,y) .  This 

immediately gives a G6del numbering for  the a-r .e ,  sets, R, = 

{x I L~ 1=3 Y~, (x, y)}, and a standard simultaneous a-recursive enumeration of 

these sets, R ,  ~ ={x l ( : : l y  E L,~)~,(x,y)}. 

We now use this enumerat ion to define relative recursiveness,  beginning of 

course with an approximation: [e ]C(y)=  ~5 iff 

(::l p) (::l ~)[ (y ,  80, r / )E  R ,  ~ and K~ C_ C n tr and K,  C ( a  - C ) n  or] 

(we employ some a-recursive coding ( , . . . , )  of n-tuples). We then say that 

[e]C(y) = 8 if [e]oC(y) = 6 for some tr. (Note that this makes [e] c a possibly 

multivalued function.) This enables us to define the notion of weakly a- 

recursive in ( <= w~) for a partial function f: .f = woC iff f = [el c for some e (and 

so in particular [e] c is single-valued). Of course, for a set B we say that 

B -< ~oC iff the characteristic function of B is weakly a- recurs ive  in C. We 

now use weak a-recurs iveness  to define two key notions. The recursive 

colinality of a set A (rcf A) is the least 3' =< a such that there is an f =< waA with 

domain Y and range unbounded in a. A is hyperregular iff rcf A = a, otherwise 

it is non-hyperregular. 

Although =< w~ is a useful tool, we are really interested in recovering a-finite 

amounts  of information rather than just single values. We therefore  define 
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a-recursive in (<- o) by saying that B _-< ~C iff there is an e such that for all 

a-finite sets K~ 

K~ C_ B~--~( 3 p)( 3 n)( 3 cr) ((p, rl, 3,,O) E R7 

and Ko_CC and K , _ C a - C ) ,  
and 

K, C a - B o ( 3 p )  (::1 -q) ( ::1 o')((p, 77, % 1) ~ R[  

and Ko_CC and K , _ C a - C ) .  

As _-< a is transitive and reflexive, it gives us a notion of a-degree: 

deg(a )  ={BIB <=~A <=~B}. 

As usual, the a-degrees form an upper semi-lattice ordered by _-< ,.The join of 

two degrees deg (A)v deg (B) is deg (C), where 

C = { 2 " y l y E A }  U {Z.y + l l T E B } .  

We call an a-degree a-r.e., regular, irregular, hyperregular or non-hyperregular, 
if it contains an a-r.e., regular, non-regular, hyperregular or non-hyperregular 

set, respectively. (Note that if an a-degree is (non-) hyperregular then every set 

in it is (non-) hyperregular. An a-degree, however, can be both regular and 

irregular. It is called non-regular if'no member is regular.) As usual, there is a 

largest a-r.e, degree O' that of {(x, y)lx E Ry} called the complete a-r.e, degree. 
(The complete a-r.e, sets are the ones in this degree.) 

For our last set of definitions we turn to the notions of projectum and 

cofinality. We define the E,-projectum of a (relative to A), written trnp(a) 

(o 'npa (a) ) ,  as the least/3 _- a for which there is a one-one E,(Y.,(A)) map of a 

into/3. The key fact here is that crnp(a) is also the least/3 such that there is a 

Y,,/La subset of/3 which is not in L~ [2]. Note that the usual notation for the 

~rlp(a) is a*, and the key fact says that any a-r.e, set bounded below a* is 

a-finite. Similarly the Y,(E.(A)) cofinality of 6<=a, written crncf(8) 

(on cfa (6), is the least /3 such that there is a E,(E,(A)) map of/3 onto an 

unbounded subset of & 

1.0. As an exercise in definition chasing note that, if C is a complete regular 

a-r.e, set and D is any regular a-r.e, set, then o - 2 c f ( a ) =  r c f C =  < rc fD = 

t r l c f o ( a )  and ~2p(a)=trlpc(a)<=trlpo(a). To cite yet another useful 

exercise, we note that t r 2 c f ( a ) = c r 2 c f ( r c f D ) = t r 2 c f ( t r 2 c f ( r c f D ) ) =  

cr2cf(cf(a*)L-). Here one uses the admissibility of a as well as the various 

definitions. 
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We close this section with some important facts about the a-r.e, degrees: 

l.l  Every a-r.e, degree is regular [4]. 

1.2 Every a-r.e, degree contains a conscientious a-r.e,  set, i.e., a regular 

a-r.e, set C such that C( = a - C) is unbounded in a and its order type, [t~ l, is 

the recursive cofinality of C[ l l ] .  

1.3. An a-r.e, degree is irregular iff a*  < a and its recursive cofinality is 

_<- c f (a*)  L• (the cofinality of a*  in La) [I l]. (Note that rcf is an invariant of 

a-degree since f _-< ~,A < ,C  implies that f-_< w~C.) 

1.4. If B is a regular a -r.e. set and tr lpa (a)  > rcf(B), then 0' _-< oB (Lemma 

3.3 of [9]). 

Finally a fact about projecta: 

1.5. If B is a regular a-r.e, set such that t r l p s ( a )  _-< rcf(B)  =/3, then there 

is a tame onto map f:/3 ~ a (that is f can be approximated by an a-recursive 
function of two variables fO(x) such that 

( va  < 13)(3 ~-) (Vor > ~') (Vx < a ) ( f r  = f(x)). 

Such a function f is called a tame "22 projection of/3 onto or. The usefulness of 

such functions lies in the fact that they can be used in priority arguments to put 

the requirements in a short (i.e. /3) list. [Such a function is given by the 

approximation to {e}~"(x) given in Section I of [9] where f =  [el a. The 

tameness fol4ows immediately from the definition of rcf B and the assumption 

that tr l p s ( a )  _-< rcf B.] Indeed, it was for just this reason that tame E2 functions 
were introduced by Lerman [3]. 

2. The main theorem 

Our goal is to characterize those admissible ordinals a that have precisely 

one irregular (non-hyperregular) a- r.e. degree, and to prove a splitting theorem 

for these degrees for all other a. 

THEOREM 2.1. There is precisely one irregular (non-hyperregular) a-r.e. 

degree if and only if tr2p(a) > cf (a *)% (tr 2 cf (ct) < a and tr 2 p(a) > rcf D for 

every non-hyperregular a-r.e, set D). Moreover, if this condition fails, then for 

every irregular (non-hyperregular) a-r.e, degree e there are strictly smaller 

irregular (non-hyperregular) a-r.e, degrees a and b such that avb = e. 

PROOF. If the condition holds, then clearly there is an irregular (non- 

hyperregular) a-r.e, degree, as a _-> t r 2 p ( a ) >  cf(a*)  L• implies that a > a*,  

and so there are non-regular a-r.e, sets (tr 2 c f ( a ) <  a implies that 0' is not 
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hyperregular).  Moreover ,  1.1, 1.3 and 1.4 show that every  irregular (non- 

hyperregular) a-r .e ,  degree must be complete.  

If, on the other hand, the condition fails and there is an irregular (non- 

hyperregular) a-r.e, set, we claim that we may choose an t~-r.e, set D such that 

a > c f ( a * )  ~- = r c f D  _--- tr lpo (a)(a > r c f D  _-> tr lpo (a)). That there is an a- 

r.e. D with rcf D = c f ( a * )  L= follows from Theorem 3.9 of  [11] and our  

remarks in 1.0. If, however,  r c f D  < t r  l po (a ) ,  then D is complete by 1.4 and 

so, again by 1.0, tr l p o ( a )  = t r 2 p ( a ) >  c f ( a * )  L=, contradicting our assumption 

that the condition failed. (The failure of the condition guarantees the existence 

of a non-hyperregular a-r .e ,  set D such that a > r c f D  =>tr2p(a).  If D is 

complete,  then tr2p(a)=trlpo(a) by 1.0, while if D is incomplete,  

rcfD _-> tr lpo ( a )  by 1.4.) We will now use such a D and the associated projection 

guaranteed by 1.5 to prove the splitting theorem asserted above. Note that our 

proof  will be the same for both the irregular and the non-hyperregular  a-r .e.  

degrees. Of course, it clearly implies that there is more than one irregular 

(non-hyperregular) a-r .e ,  degree as required. 

Let  c be the given irregular (non-hyperregular) a-r .e,  degree. By 1.2 we may 

choose a conscientious C in c. We let c be a one-one a- recurs ive  function 

enumerating C and approximate C by C ~ ={c(i) l i<tr  }. Our goal is to 

construct  a-r .e ,  sets A and B with 1,4t = r c f C  = I/~l if cr 1 pc(a)_-- < r c f C  or 

with I A I = rcf D = ]/3 ] otherwise. We will also want to insure that A, B - ~ 

C;~,,A, C:g,~B and A U B = C. As this last requirement implies that C =<= 

A v B, all of this together with 1.3 (definition of hyperregular) will establish our 

theorem. 

Before describing the actual construction we must fix our notation. Let  

/3 = r c f C  if rcf C=>tr 1 p c ( a )  and let it be rcf D otherwise. Let  g : / 3 ~ a  be 

the map guaranteed by 1.5 with its tame recursive approximation given by g". 

We can also fairly easily get a map f of K = rcf C = I C I onto an unbounded 

subset of a which is strictly increasing with a tame recursive approximation f~ 

(see, for example, Section 3 of [9]). Note  that g as well as [ is a - recurs ive  in C 

even if/3 = rcfD,  since this can occur  only if rcf C < cr I pc (a ) ,  which by 1.4 

implies that C is complete.  Similarly we let h :7- -* /3  be an increasing 

unbounded function on 3' = c r 2 c f ( a ) =  tr2cf(/3) with its tame recursive ap- 

proximation given by h"  

Here one should note that K = 3' if C is complete and otherwise K =/3. 

THE GENERAL PLAN. As we enumerate  an element c(tr)  in C at stage tr, we 

will immediately put it into A or B. This will insure that A t.) B = C. There will 
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of course be negative requirements as in the usual splitting theorem [8] that will 

dictate via a priority scheme which set gets c(tr). These requirements will try 

for each e to preserve computations of more and more of C from A or B via e. 

As usual, once e has highest priority one sees that these preservations must be 

bounded or C would be a- recursive. As there are at most/3 elements in t~ all 

together, we will in fact have to preserve fewer than/3 such computations for 

each e. As we have also put the reduction procedures in a/3 list, we can hope to 

make .4 and/~ small (i.e. of order type =</3) without overrunning the negative 

requirements if each such requirement also keeps out fewer than /3 many 

elements. Should we succeed, however, in making I,g, I =/3 = I/~ I, this added 

restriction will not make us miss any possible correct computations from A or 

B. We in fact assure that .4 and /~ are small by adding new positive 

requirements that try to put elements of C into both A and B. (Thus we give up 

the conclusion of [8] that A n B = 0.)  

To guarantee that injuries caused by initial segments of the requirements 

don't become unbounded in a, we use the blocking technique introduced in [8] 

to govern the interaction of negative requirements. We will moreover fix the 

blocking in advance into 3, many pieces which are generated by h" at stage tr. 

The positive requirements, however, will be put in a r list. The idea is that the 

8th positive requirement (for ~i < r )  will try to put all elements of C n f(8) 

into A and B. Their interaction with the negative requirements will be 

determined by the/3 listing of reduction procedures if r =/3 (by the blocking 

into y pieces if K = y). (We will indicate differences between these two cases 

by putting the case r = 3' in parenthesis.) The point is, that to get A, B _-< ~C we 

will want to know a- recursively in C what is the highest priority ever given to a 

particular element of C by these new requirements. 

TIlE REQUIREMENTS. As almost everything is symmetric with respect to A 

and B, we will usually describe only the A part of the construction and proof. 

When necessary we will distinguish by subscripting with A or B to indicate any 

differences. We first describe the formation of the negative requirements. Our 

terminology will be defined simultaneously with the construction. 

At stage or we find for each ~5 < y the least x ~  C" for which there is no 

negative 8 requirement for x associated with a 8-active reduction procedure. If 

there is a 8-active reduction procedure e < h*(8) for which [g"e]~*(x) = 0 via 

a computation requiring less than /3 many elements to be outside of A" (the 

elements enumerated in A by stage ~), we take the least such computation and 

create a negative 8 requirement [or x associated with e. This requirement 
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consists of the elements assumed to be outside of  A '~ by the chosen 

computation.  If at any later stage we put any element of the requirement  into A 

we destroy it. We also destroy it at any later stage at which g*e changes value 

or e is 3-inactive (because of another  requirement) and x enters C. If a 

negative requirement is never  destroyed,  it is called permanent. Finally we call 

a reduction procedure  e </3  3-active at stage cr unless there is a 3 requirement  

(as yet understroyed) for some x associated with e such that x E C ~, in which 

case it is 3-inactive. The idea is that, as long as we seem to have a computat ion 

showing that [ge]A# C, we need pay no further attention to e. 

At stage tr we also create a positive 77 requirement for  each 19 < x and each 

x < f "07)  in C ~ for which there is no such requirement.  

TIlE CONSTRUCTION. At stage a we first form requirements as indicated 

above. We then put c(cr) into A or B. The choice is made so as to preserve as 

much as possible. More precisely, we consider the sets IA (IB) of negative A (B) 

requirements which would be des t royed by putting c(tr)  into A (B). Let  v~(us) 

be the least ordinal u < y such that IA (IB) contains a negative v-requirement.  If 

v~ _-< uB, we put c(cr) into B, otherwise it goes into A. We now proceed for each 

~/< r in turn to put elements with positive 77 requirements into A(and B), 

unless they are in an as yet understroyed negative 3A(3B)-requirement as- 

sociated with an e < "rt (such that 8 < 77 if r = 7)- We of course destroy other 

negative requirements as necessary for each 77 before going on to ~ + 1. 

THE PRIORITY ARGUMENT. Our main goal is to show that there are less than/3 

permanent  negative 3-requirements  for each 3 < y. We will then be able to 

conclude that C ~  ~A and ]A I <--/3- A further  argument will then be adduced to 

show that A =<,C and so complete the proof of Theorem 2.1 

LEMMA 2.2. For each 3 < y there are less than [3 permanent negative 

8'-requirements for each 3' < 3. Moreover, there is a bound on the stages at 

which all 3' requirements (3' < 3) are created, destroyed or have any of their 

elements enumerated in C. 

PROOF. We proceed by induction on 8. Note first that if r is the bound of the 

theorem, then no 3A-requirement created after  stage 7 can be dest royed by an 

element c(tr)  via the first part of the construction at stage o'. Next  let ~-~ _-> z be 

such that h~(r/) = h(r/)  for  tr > % and "O --< & and such that g*(r /)  = g(r /)  for 

77 < h(3)  and ff(~') = f(s  r) for  ~" <_- h(3)  (~" < 3 if K = ,/) and tr > zl. Of couse, 

after  stage ~-, no negative 3A requirement can be dest royed by a change in gL 

Finally, because of the regularity of C and the admissibility of a, we can 

choose a ~2--> z, such that 
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C ~ A f h ( 8 ) = C  fq f h ( 8 )  (C ~ A [ ( 8 ) = C  N [ ( 8 ) )  for or>~-2. 

Now no new positive 7 requirements can be created after  stage ~'2 for 

7 < h(8) (n < 8). 

We now proceed by induction on 7 < h(8)  to bound the stages at which 

positive 7 requirements suceed in putting elements into A. As our procedure  

will be a - recurs ive  in C and h (8) < rc f (C) ,  the whole process will be bounded 

below a. (z2 + 1 is already such a bound if K = y. All 8' requirements for  8'  < 8 

are now permanent  and so any positive re.quirement which did not succeed at 

stage ~2 is being thwarted by a permanent  negative requirement  of higher 

priority. It can therefore never  succeed at any later stage.) Of course, those 

elements belonging to negative 8 ' -requirements  for 8'  < 8 never  get put in A 

since these requirements are permanent.  Suppose that we have found (a- 

recursively in C) a bound on the stages at which positive 7 '  requirements put 

elements into A for 7 '  < 7- From this stage on a negative 8A-requirement, Say 

for x, which is associated with 7 '  < 7 can be dest royed only by 7 '  becoming 

8A-inactive and x then entering C. We can ask a- recurs ively  in C which x ' s  

with such requirement ever get into C. If there are none, then every 8A- negative 

requirement  associated with 7 '_ -  < 7 is permanent.  Thus any positive 7 + 1 

requirement  which has not yet succeeded never  will. (It must be in a permanent  

negative requirement of higher priority or it would get into A now.) If there are 

such x 's ,  we go (a-recurs ively  in C) to a stage by which all of them have 

entered C. At this stage all negative 8A- requirements associated with 7 '  < 7 are 

permanent  and so, as before,  any positive 7 + ! requirement not succeeding 

now is being thwarted by a permanent  negative requirement of higher priority. 

To complete our induction, first note that for limit ordinals 7 we just begin this 

process above all bounds for 7 ' <  7. We let ~'3 be the supremum of these 

bounds for r / <  h(8).  (r3 = r2+ 1 if K = 3'.) 

After stage r3 a negative ~ , - requirement  for x associated with 7 can be 

destroyed only if 7 becomes ~A-inactive and then x later enters C. To bound 

these stages consider first the set 

W = {7 < h (~)1(3 cr > r3) (7 is 8A-inactive at stage or)}. 

W is a Yl subset of h ( 6 ) < / 3  < a* ,  and so a-finite. By the admissibility of a 

there is then a bound z4 on the stages at which elements enter W by becoming 

8A-inactive. Thus any 7 < h (8) which is 8A-inactive at stage 74 remains so 

forever,  while no e < h (~)  can become 8A-inactive at any stage after z,. It 

therefore suffices to wait until a stage ~-~ by which all x ' s  in C for which there 

are 8A requirements at stage r4 have been enumerated in C. (Again such a stage 
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exists by the regularity of C.) Clearly, after  stage ~-~ no 8A-requirement is ever  

destroyed.  

We can now show that there are less than/3 permanent  8A requirements.  For 

r / E  W note that at stage r: there must be fewer  than/3 many  x ' s  for which we 

can have 8A requirements  associated with r/, since any such x is in fact  not in C 

while I C [ = / 3  and so any bounded segement  of C has order type </3. 

Moreover ,  rt remains 8~-inactive forever ,  and so no more 8~-requirements  can 

be created which are associated with T/. 

Next  note that, for any 8~ negative requirement  for some x associated with 

an ~ not in W at a stage tr > r~, we must have x Z C by definition of W and the 

permanency  of such a requirement.  By the construct ion there can be at most  

one such requirement  for each x. As I C I=/3,  the only way to get /3 many 

requirements  is to eventually form one for every x • C (we always try for the 

least x for which we have no such requirement  as yet). If this happens,  

however ,  we can enumera te  C a - recurs ive ly  as the set of e lements  x for which 

there is a 8~ negative requirement  at a stage 8 > r,. This would contradict  the 

fact that C is not a - recurs ive .  Thus we have shown that there are fewer  than/3 

many permanent  8A negative requirements.  

After  stage r,  these requirements  are created for x ' s  on an initial segment  of 

(ignoring those with such requirements  at r~). As [ (~[ =/3, this is a proper  

initial segment and so by the regularity of C an a-finite set. Thus by the 

admissibility of a there is a bound r~ on the stages at which such requirements  

are created. Finally, as any requirement  created by stage r~ consists of 

elements  less than 76, the regularity of C again assures us that there is a bound 

r7 on the stages at which elements  of such requirements  are enumerated in C. 

We have thus established the conclusions of the lemma for &, negative 

requirements.  The same argument  beginning now at stage ~-7 establishes the 

results for  the 8B negative requirements.  This then carries our induction one 

step forward.  To see that all is well at limit ordinals 8, note that the map from 

8 ' <  8 to the bound claimed in the lemma is a ,~2 function. As 8 < y = 

tr 2 c f ( a ) ,  the range of this function on 8 is bounded. This then gives us the 

bound on all 8 '  requirements  for 8'  < 8 at limit ordinals 8 and alows us to carry 

out the above  argument  for &requ i rements  and continue the induction. �9 

We can now prove  that A and B have the desired properties.  

LEMMA 2.3. [[,4[-</3 and [/3[_-</3. 

PROOF. For any 8 < y let T be the bound given by L e m m a  2.2 for 8. 
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The positive requirements clearly guarantee that all the elements of C N 

[h(~) (if K = y replace fh by [ in this proof) which are not put in A and B are 

kept out by some negative 8 ' - requi rement ,  with 6' < ~ at stage ~-. As there are 

less than/3 of them and each one keeps out fewer  than/3 elements, we see that 

A N [h(~) and B N fh(~) agree with C O fh(~), except  possibly on some set 

of size less than/3. As C ~ fh(~) has size less than/3, so too do fi, ~ fh(8) and 

O [h(8). As foh  on 3' is unbounded in a, our conclusion follows from the 

fact that /3 is a cardinal in L~. �9 

LEMMA 2.4. C~, ,A and C'r ~,B. 

PROOF. If not, suppose for definiteness that [ge] A is the characteristic 

function of C. Let ~ < 3' be such that e < h(8).  Let  ~" be the bound given by 

Lemma 2.2 for 8 + I and let x be the least element of tff for which there is no 

negative 8A requirement associated with a 8A-active reduction procedure  at 

stage r. As [ge] A is the characteristic function of C, there is a computat ion 

showing that [ge]A(x)=O and so (as A is a-r .e.)  a stage o r > z  at which 

[gel~*(x) = 0. Now if e were 8A-inactive at stage or, it would be because of a 

computation [g ~' e ]~o, (x')  = 0 for some or' < or and x '  E C which has not yet 

been destroyed by stage or. Our choice of r then guarantees that this 

requirement  is never destroyed and so g"'e = ge and the information used 

about fi, is correct  and so [ge]A(x ') = 0. This of course contradicts our 

assumption that [ge ]'~ is the characteristic function of C. Thus e is 8A-active at 

stage or and so we must create a negative 8A requirement for x at stage or. This, 

however,  contradicts the choice of r as or > r. �9 

We now complete the proof of our theorem by establishing the last condition 

on A and B. 

LEMMA 2.5. A <=,, C and B <=,, C. 

PROOF. We show that for ~/< K we can inductively compute A O f ( r / )  

a - recurs ive ly  in C and also decide which negative requirements associated 

with r/ are permanent.  First recall that initial segments of .f can be computed 

from C. Now suppose that we have computed A O f(p.) for ev e ry / z  < r/ and 

we wish to decide if a negative requirement N associated with some "0' < r/ is 

permanent.  It can be destroyed by a change in g ' r / ' ,  but we can compute g 

restricted to r/ a- recurs ively  in C and so can check this possibility. Next  it 

could be destroyed by the x for which we have this requirement entering C 

after  r/' is inactive. To check this possibility we just ask if x E C, and if it does 

we wait until x E C"  to see if the requirement  is destroyed.  Finally, it can be 
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destroyed by an element y E N entering A. This can happen either at a stage tr 

at which y = c(tr)  is put into A via the first part of the construction,  or by y 

being put into A by a positive requirement.  To check if the first possibility 

occurs we just wait until C ~ O N = C N N. The second alternative can occur  

only if y has a positive/x- requirement with/a. _-< *7'(/x _-< ~ where ~ is the least 

ordinal < y such that .7' < h(~5) if K = 3'), i.e. y E C n [(/~) Thus the inductive 

hypothesis that we have computed A n f ( /z )  for p. _-< *7' < .7 (note that 6 _-< *7' 

if K = y) allows us to check this final possibility as well. Of course, if none of 

these happen N is permanent.  

To now compute A n/'(*7), it suffices to show that every element x of 

C n ( f (*7 ) -  u { / (p . ) ]~  < *7)}) is put into A unless it belongs to a permanent  

negative requirement associated with a /x  < .7 (/1 < h(~) where 8 is the least 

ordinal < ~/such that .7 < h(fi) if K = 3`). To see that this suffices, note that we 

just have to wait until each such x is put into either A or a permanent  negative 

requirement associated with such a /z  which we can recognize a- recurs ively  in 

C. To actually establish the claim, consider a stage ~r at which x E C ~ n f* (r/) 

and such that all negative requirements associated with any /x <.7 are 

permanent  (such a stage exists by Lemma 2.2). If x is not a member of any such 

negative requirement,  it is clearly put into A by the second part of the 

construction. On the other hand, if x is in such a requirement it can never be 

put into A, since this would contradict  the permanency of the requirement.  

Finally, one should note that Lemma 2.2 guarantees that for  any *7 </3 this 

entire procedure (for every x in the set) involves only a bounded set of stages 

and so only o~-finitely much of C is needed for the entire inductive com- 

putation. �9 

REMARK. We first proved this theorem for irregular degrees by a somewhat  

different method in trying to answer the question of when one can split a 

non-regular a-r .e,  set into two disjoint a-r .e ,  sets of strictly lower t~-degree. Of 

course, when there is only one irregular o~-r.e, degree this is impossible. What 

we proved, however,  was that, if C C_ a*  is a simple a-r .e ,  set (i.e. C is 

unbounded in a *  and C n K #  ~ for every  a-finite K which is unbounded in 

a*)  and the conditions of the theorem fail, then there are disjoint simple t~-r.e. 

sets A and B such that A U B = C, A<~C, B<-_,C, C*e~A and C ~ B .  The 

proof involved adding positive requirements to make both A and B simple 

rather than to make their complement  thin. As every irregular a-r .e ,  degree 

contains a simple a-r .e,  subset of a *  [l l], this also proves Theorem 2.1 for the 

irregular a-r .e ,  degrees. Simpson then proved that, when the condition of 
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Theorem 2.1 for non-hyperregular or-r.e, degrees fails, there are incomparable 

non-hyperregular a-r .e,  degrees (the other direction is a consequence of 1.4). 

Upon being informed of this result, we proved Theorem 2.1 as it now stands. 

3. Weak a-recursiveness 

When Driscoll [1] proved that weak o~-recursiveness is not transitive on the 

a-r .e,  sets for o~ = 00 cK z , the question naturally arose as to when < ~  is 

transitive on these sets. Stillwell [13] thought that this should occur  only when 

is E2-admissible (an obviously sufficient condition). Simpson [i 1], however,  

found a counter  example by showing that N~ has only one non-hyperregular  

o~-r.e, degree, that of 0' but was unable to settle the question in general. (The 

point here is that if an t~-r.e, set A is hyperregular and B _-< wo A, then B _-< oA 

while every  a-r .e,  set is ot-recursive in a complete one. Thus <w~ = --<~ on the 

~-r.e. sets and of course -<~ is transitive.) We show that this example is 

indeed typical and characterize those admissible a for which _-< ~ is intransi- 

tive in terms of the conditions of Theorem 2.1 by proving the following: 

THEOREM 3.1. --<w~ is intransitive on the a-r.e, sets if and only if there is an 

incomplete (and so more than one) non-hyperregular a-r.e, degree. 

PROOF. As noted above,  the only if direction is immediate. Assume therefore  

that B is an incomplete o~-r.e, set with rcf B = fl < a. Let  h:B- -~a  have 

unbounded range and be weakly a- recurs ive  in B. By [5, w we can let A be a 

complete a-r .e,  set such that (X) (A _-< ~a X --) A _-< aX). We then let ~(x, y) be 

a Ao formula such that y ~ A ~-~ 3 x~ (x, y). Finally, we choose our set C to be 

{(6, y)] ( : I x  < h(8))~(x ,y )} .  

We first note that C is a-r .e,  since 

C = {(8, y)]( :1 ~r) ( ::1 x < hr y)}, 

where h ~ is the c~-recursive approximation to h given in [9, w Next  we claim 

that C _-< ~B.  As C is a- r.e., there is automatically a procedure listing (8, y) ~ C 

while (8, y ) ~  C ~,  (3y )  (~ = h ( 8 )  and --~(3x < ),)~p (x,y)). 

(As h _-< ,oB, this can easily be converted into the statement required in the 

definition of C _-< ,oB.) Finally, we show that A < ,oC: 

yff=A ,~,([3 x {y})N C = 0 .  

(Again, as A is ot-r.e., the part of the definition of _-<,o for y E A is automatic.) 

Thus A -< _ V  <= ,oB and so the transitivity of _-< wo would imply thaA _-< w~B. 
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O u r  c h o i c e  o f  A t h e n  s a y s  t h a t  A _-< , B ,  c o n t r a d i c t i n g  t h e  i n c o m p l e t e n e s s  o f  

B. �9 
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